
Homework 5
MTH 829 Complex Analysis

Joshua Ruiter

February 13, 2018

Proposition 0.1 (Exercise VII.10.1). Let f be a continuous complex valued function on an
open subset G ⊂ C, such that

∫
R
f(z)dz = 0 for every rectangle R with sides parallel to the

coordinate axes, with interior in G. Then f is holomorphic.

Proof. Let z0 = x0+ iy0 ∈ G, and choose r > 0 so that B(z0, r) ⊂ G. For z ∈ B(z0, r), define
piecewise C1 curves γ1z = [z0, x + iy0] ∪ [x + iy0, x + iy] and γ2z = [z0, x0 + iy] ∪ [x0 + iy, z].
Geometrically, γ1z and γ2z are paths from z0 to z that together trace out a rectangle. Now
define two functions

g1(z) =

∫
γ1z

f(w)dw g2(z) =

∫
γ2z

f(w)dw

Let Rz be the rectangle γ1z ∪ γ2z . By hypothesis,
∫
Rz
f(w)dw = 0. To integrate over Rz, we

reverse the direction of one of γ1z , γ
2
z , so∫
γ1z

f(w)dw =

∫
γ2z

f(w)dw

That is, g1 and g2 are actually the same function, which we’ll call g. We claim that g is
holomorphic at z0 and that g′(z0) = f(z0). Viewing g as the integral over γ2z and then
differentiating with respect to x gives

g(z) =

∫
γ2z

f(w)dw =

∫
[z0,x0+iy]

f(w)dw +

∫
[x0+iy,z]

f(w)dw

=

∫ y

y0

f(x0 + it)i dt+

∫ x

x0

f(t+ iy)dt

∂

∂x
g(z) =

∂

∂x

∫ y

y0

f(x0 + it)i dt+
∂

∂x

∫ x

x0

f(t+ iy)dt

= f(x+ iy) + i
∂

∂x

∫ y

y0

f(x0 + it)dt

= f(x+ iy)
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Viewing g as the integral over γ1z and differentiating with respect to y gives

g(z) =

∫
γ1z

f(w)dw =

∫
[z0,x+iy0]

f(w)dw +

∫
[x+iy0,z]

f(w)dw

=

∫ x

x0

f(t+ iy0)dt+

∫ y

y0

f(x+ it)i dt

∂

∂y
g(z) =

∂

∂y

∫ x

x0

f(t+ iy0)dt+
∂

∂y

∫ y

y0

f(x+ it)i dt

= if(x+ iy) +
∂

∂y

∫ x

x0

f(t+ iy0)dt

= if(x+ iy)

Thus

∂

∂z
g =

1

2

(
∂

∂x
+ i

∂

∂y

)
g =

1

2

(
f(x+ iy) + i2f(x+ iy)

)
= 0

Thus g is holomorphic. And we showed along the way that ∂
∂x
g = f , so g′ = f . Hence f is

holomorphic.

Lemma 0.2 (for Exercise VII.10.2). Let G ⊂ C be open and let f : G → C be continuous.
Let z1, z2 ∈ G so that [z1, z2] ⊂ IntG. Then

lim
h→0

∫
[z1+h,z2+h]

f(w)dw =

∫
[z1,z2]

f(w)dw

lim
h→0

∫
[z1,z2+h]

f(w)dw =

∫
[z1,z2]

f(w)dw

Proof. We begin with the first limit. Parametrize [z1, z2] as γ(t) = (1 − t)z1 + tz2, and
parametrize [z1 + h, z2 + h] as γh(t) = γ(t) + h. Then

γ′(t) = γ′h(t) = z2 − z1

Thus ∫
γh

f(w)dw =

∫ 1

0

f(γ(t) + h)(z2 − z1)dt = (z2 − z1)
∫ 1

0

f(γ(t) + h)dt

Choose a bounded neighborhood of [z1, z2] in G. (This exists by compactness of [z1, z2].)
Then we can choose a smaller, compact neighborhood K of [z1, z2]. Since f is continuous
on K, f is uniformly continuous on this compact neighborhood. Fix ε > 0. By uniform
continuity of f on K, there exists δ > 0 so that

|h| < δ =⇒ |f(γ(t))− f(γ(t) + h)| < ε
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for all t ∈ [0, 1]. Then for |h| < δ,∫
γ

f(w)dw −
∫
γh

f(w)dw = (z2 − z1)
(∫ 1

0

f(γ(t))dt−
∫ 1

0

f(γ(t) + h)dt

)
= (z2 − z1)

∫ 1

0

f(γ(t))− f(γ(t) + h)dt

≤ (z2 − z1)
∫ 1

0

ε dt = (z2 − z1)ε

This says precisely that

lim
|h|→0

∫
γh

f(w)dw =

∫
γ

f(w)dw

Note that |h| → 0 is equivalent to h→ 0, so this is exactly what we wanted to prove.
Now we do the second limit, which is pretty much the same argument. Again, parametrize

[z1, z2] as η(t) = (1−t)z1+tz2 and now parametrize [z1, z2+h] as η(t) = (1−t)z1+t(z2+h) =
η(t) + th. Then ∫

ηh

f(w)dw = (z2 − z1)
∫ 1

0

f(η(t) + th)dt

As above, we can choose a compact neighborhood of [z1, z2], on which f is uniformly contin-
uous. Fix ε > 0. Then there exists δ > 0 such that for all t ∈ [0, 1] we have

|h| < δ =⇒ |f(η(t))− f(η(t) + h)| < ε

Since t ∈ [0, 1], |th| < |h| < δ, which implies

|f(η(t)− f(η(t) + th)| < ε

Now we repeat the chain of equalities and inequalities of integrals with th instead of h and
η instead of γ.∫

η

f(w)dw −
∫
ηh

f(w)dw = (z2 − z1)
(∫ 1

0

f(η(t))dt−
∫ 1

0

f(η(t) + th)dt

)
= (z2 − z1)

∫ 1

0

f(η(t))− f(η(t) + th)dt

≤ (z2 − z1)
∫ 1

0

ε dt = (z2 − z1)ε

thus

lim
|h|→0

∫
ηh

f(w)dw =

∫
η

f(w)dw

Proposition 0.3 (Exercise VII.10.2). Let f a continuous function in the region {z : |z| <
1, Im z ≥ 0}, real valued on the segment (−1, 1) and holomorphic on the open set {z : |z| <
1, Im z > 0}. The f can be extended holomorphically to the open unit disk.
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Proof. Define f on the bottom half of the unit disk by

f(z) = f(z)

Note that this agrees with the original f on (−1, 1) because f is real-valued there. By
Exercise II.8.2, f is holomorphic on {z : |z| < 1, Im z < 0}. This extension is continuous on
(−1, 1) by the Gluing Lemma for continuous maps. To show that f is now holomorphic on
the unit disk, we will show that the integral over every rectangle with sides parallel to the
axes is zero. For rectangles contained in either of the half planes Im z < 0 or Im z > 0, this
follows from Cauchy’s theorem for a convex region, as f is holomorphic off of the real axis.
It remains to consider rectangles that intersect the real axis.

First consider a rectangle sitting on the real axis; that is, a rectangle lying in Im z ≥ 0.
Write it as R = [z1, z2] ∪ [z2, z3] ∪ [z3, z4] ∪ [z4, z1] where z1, z2 ∈ R. For ε > 0, define Rε to
be the rectangle

Rε = [z1 + iε, z2 + iε] ∪ [z2 + iε, z3] ∪ [z3, z4] ∪ [z4, z1 + iε]

All of the following integrals are of f(w)dw, so we omit the integrand to reduce visual clutter
and redudancy. ∫

Rε

=

∫
[z1+iε,z2+iε]

+

∫
[z2+iε,z3]

+

∫
[z3,z4]

+

∫
[z4,z1+iε]

Applying the previous lemma,

lim
ε→0

∫
[z1+iε,z2+iε]

=

∫
[z1,z2]

lim
ε→0

∫
[z2+iε,z3]

=

∫
[z2,z3]

lim
ε→0

∫
[z4,z1+iε]

=

∫
[z4,z1]

Thus

lim
ε→0

∫
Rε

=

∫
R

Since f is holomorphic on Im z > 0, each integral
∫
Rε

is zero. Thus
∫
R
f(w)dw = 0. For

rectangles sitting under the real axis with one side length along the real axis, the same
argument applies. Take limiting rectangles that miss the real axis by ε, and apply the
previous lemma to get limε→0

∫
Rε

=
∫
R

.
Finally, we need to consider rectangles that cross the real axis. Let R be such a rectangle.

Let R+ and R− be the rectangles formed by cutting R along the real axis, with R+ sitting
above the real axis and R− below. By orienting both R+ and R− counterclockwise, we see
that ∫

R

=

∫
R+

+

∫
R−

which is zero since we just showed that
∫
R+

=
∫
R−

= 0. We have shown that the integral of
our extension of f around any rectangle with sides parallel to the axes and interior in the
disk is zero. Thus by Exercise VII.10.1, this extension is holomorphic.
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Proposition 0.4 (Exercise VII.11.1). Let f be an entire holomorphic function such that for

some k ∈ Z and R > 0,
∣∣∣f(z)zk

∣∣∣ is bounded for |z| > R. Then f is a polynomial of degree at

most k.

Proof. Since f is entire, the power series
∑∞

n=0 anz
n converges to f(z) for all z ∈ C (where

an = f (n)(0)/n!). Define

g(z) =
∞∑

n=k+1

anz
n−k

Since the above series has the same radius of convergence as f , the function g is well defined
and entire. Then for z 6= 0, we have

f(z)

zk
=
∞∑
n=0

anz
n−k =

k∑
n=0

anz
n−k + g(z) =⇒ g(z) =

f(z)

zk
−

k∑
n=0

anz
n−k

so applying the triangle inequality gives

|g(z)| ≤
∣∣∣∣f(z)

zk

∣∣∣∣+

∣∣∣∣∣
k∑

n=0

anz
n−k

∣∣∣∣∣ ≤
∣∣∣∣f(z)

zk

∣∣∣∣+
k∑

n=0

|an||zn−k|

Note that for n < k we have

|z| > R =⇒ |z|−1 < R−1 =⇒ |z|n−k < Rn−k

Let M be a bound for
∣∣∣f(z)zk

∣∣∣ on |z| > R. Then for |z| > R,

|g(z)| ≤M +

∣∣∣∣∣
k∑

n=0

anz
n−k

∣∣∣∣∣ ≤M +
k∑

n=0

|an||zn−k| ≤M +
k∑

n=0

|an|Rn−k

Thus g is a bounded entire function, so by Liouville’s Theorem g is constant. Since g has
constant term zero, this implies that an = 0 for n ≥ k + 1. Thus the tail of the series for f
is zero after k, so

f(z) =
k∑

n=0

anz
k

thus f is a polynomial of degree at most k.

Proposition 0.5 (Exercise VII.13.1). There is no holomorphic function f on the open unit
disk so that f( 1

n
) = 2−n for n = 2, 3, . . ..

Proof. Suppose there is such an f . By continuity of f ,

f(0) = lim
n→∞

f

(
1

n

)
= lim

n→∞
2−n = 0
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thus f(0) = 0. This zero must have finite order since f is not the zero function. Thus we
can write f locally at zero as f(z) = zkg(z) where k is the order of the zero at zero, and
g(0) 6= 0. Note that g is holomorphic. By continuity of g,

g(0) = lim
n→∞

g

(
1

n

)
= lim

n→∞
nkf

(
1

n

)
= lim

n→∞
nk2−n = 0

Thus g(0) = 0, which contradicts g(0) 6= 0. Thus no such f exists.

Proposition 0.6 (Exercise VII.13.2). Let f be a holomorphic function in the open subset G

of C. Let z0 ∈ G be a zero of f of order m. Then there is a branch of f
1
m in some open disk

centered at z0.

Proof. As f has a zero of order m at z0, f can be written as f(z) = (z − z0)mg(z) in some
open disk centered at z0, where g is holomorphic and g(z0) 6= 0. Since g(z0) 6= 0, there is a

(possibly smaller) open disk centered at z0 on which g(z0) 6= 0, so there is a branch of g
1
m

on that disk. Thus on that open disk,(
(z − z0)g

1
m

)m
= (z − z0)mg(z) = f(z)

That is to say, (z − z0)g
1
m is a branch of f

1
m on some open disk centered at z0.

Proposition 0.7 (Exercise VII.14.2a). Let G be a nonempty connected open subset of C
which is symmetric with respect to the real axis, that is,

G = {z : z ∈ G}

Let f : G→ C be holomorphic and suppose that f(G∩R) ⊂ R. Then f(z) = f(z) for z ∈ G.

Proof. Define g(z) = f(z). By Exercise II.8.2, g is holomorphic on {z : z ∈ G}, which is G
by hypothesis. For z ∈ G ∩ R,

g(z) = f(z) = f(z) = f(z)

since z is real and f(z) is real by hypothesis. Note that since G is symmetric with respect
to the real axis and connected, G intersects the real axis in at least one interval. Intervals
on the real line clearly contain a limit point of themselves. Hence f and g are holomorphic
functions on G that agree on a set with a limit point in G, so f = g. Thus

f(z) = g(z) = f(z)

for all z ∈ G.

Proposition 0.8 (Exercise VII.14.2b). Let G be a nonempty connected open subset of C
which is symmetric with respect to the real axis, that is,

G = {z : z ∈ G}

Let f : G→ C be holomorphic, and suppose there is a nonempty subinterval (a, b) ⊂ R such
that (a, b) ⊂ G ∩ R. Then f(G ∩ R) ⊂ R.
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Proof. As in part (a), define g(z) = f(z). Then g is holomorphic on G by Exercise II.8.2.
For z ∈ (a, b),

g(z) = f(z) = f(z) = f(z)

so f and g agree on a set with a limit point in G, so f = g. Thus for z ∈ G,

f(z) = g(z) = f(z)

For z ∈ G ∩ R, we have z = z, so f(z) = f(z). This implies that f(z) is real, since the real
line includes all fixed points of the conjugate reflection.

Proposition 0.9 (Exercise VII.16.1). Let f be a nonconstant holomorphic function on the
connected open subset G of C. Then |f | can attain a local minimum in G only at a zero of
f .

Proof. Suppose z0 ∈ G is a local minimum of |f | and suppose that f(z0) 6= 0. Then since f
is continuous, there exists r1 > 0 so that f(z) 6= 0 on B(z0, r1). Since z0 is a local minimum
of |f |, there exists r2 so that |f(z0)| ≤ |f(z)| on B(z0, r2). Let r = min(r1, r2), and consider
the function g(z) = 1

f(z)
on B(z0, r). This is well defined because f , and hence |f | is nonzero

on B(z0, r). Since |f | attains a local minimum at z0, |g| = 1
|f | attains a local maximum at

z0. But this contradicts the maximum modulus principal. Thus we conclude that either z0
is not a local minimum of |f | or f(z0) = 0.

Proposition 0.10 (Exercise VII.17.2, Pick’s Lemma). Let D be the open unit disk. Let
f : D → D be holomorphic. For z, w ∈ D we have∣∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ ≤
∣∣∣∣ z − w1− zw

∣∣∣∣
Proof. Fix w ∈ D. Define the fractional linear transformations

T1(z) =
z − w
wz − 1

=
w − z
1− wz

T2(z) =
z − f(w)

f(w)z − 1
=

f(w)− z
1− f(w)z

By Exercise III.9.4, both T1 and T2 map D onto itself. Note that T1(w) = 0, so T2fT
−1
1 (0) =

T2(f(w)) = 0, that is T2fT
−1
1 is a holomorphic self map of the open disk with a fixed point

at zero. Thus by applying Schwarz’s Lemma to the map T2fT
−1
1 we get

|T2f(z)| = |T2fT−11 (T1(z))| ≤ |T1(z)|

which we can rewrite as∣∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ =

∣∣∣∣∣ f(w)− f(z)

1− f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − wwz − 1

∣∣∣∣ =

∣∣∣∣ z − w1− zw

∣∣∣∣
which is precisely the inequality we wanted.
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Proposition 0.11 (Exercise VII.17.2). Let D be the open unit disk, and let f : D → D be
a holomorphic map. Then for w ∈ D we have

|f ′(w)| ≤ 1− |f(w)|2

1− |w|2

Proof. By Exercise VII.17.1, ∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣ ≤
∣∣∣∣∣1− f(z)f(w)

1− zw

∣∣∣∣∣
Now note that

|f ′(w)| =
∣∣∣∣ limz→w

f(z)− f(w)

z − w

∣∣∣∣ = lim
z→w

∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣
Taking the limit as z → w on both sides of our inequality,

|f ′(w)| ≤ lim
z→w

∣∣∣∣∣1− f(z)f(w)

1− zw

∣∣∣∣∣ =

∣∣∣∣∣1− f(w)f(w)

1− ww

∣∣∣∣∣ =

∣∣∣∣1− |f(w)|2

1− |w|2

∣∣∣∣ =
1− |f(w)|2

1− |w|2

We can drop the absolute value bars at the end because w, f(w) ∈ D, so |w|, |f(w)| < 1.
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